

Critical Materials: Rare Earth & Related Elements

Mark Johnson

February 28, 2011

Critical Materials in Clean Energy

1	1																2
H																	He
Hydrogen																	Helium
1.00794	4	1											-	7			4.003
3	4											5	6	/	8	9	10
Li	Be											B	C	N	О	F	Ne
6.941	9.012182											Beren 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15,9994	Fluorine 18,9984032	Neon 20,1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.989770	24.3050	21	- 22	22	24	25	26	27	20	20	20	26.981538	28.0855	30.973761	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	51.9961	Manganese 54.938049	55.845	Cobalt 58.933200	Nickel 58,6934	Copper 63.546	65.39	Gallium 69.723	Germanium 72.61	74.92160	Selenium 78.96	79,904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd		Cd	In	Sn	Sb	Te	I	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Ag Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
85.4678	87.62	88.90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium	Barium	Lanthanker	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.90545	137.327	138.905X 89	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87				105		20,			110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	l	i		I I		i l	I	1 1	l .
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)			I	l		

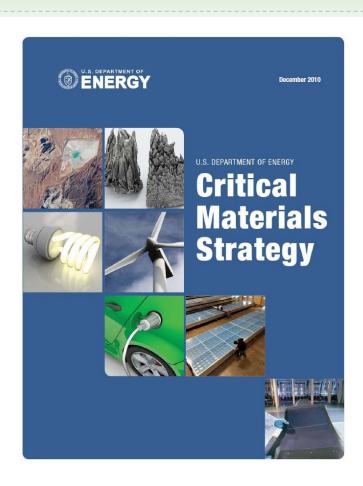
Ce \mathbf{Pr} Nd Pm Sm Eu GdTb Dy Ho \mathbf{Er} Tm Yb Cerium 140.116 Samarium 150.36 Ytterbium 173.04 (145)92 98 100 102 Th \mathbf{U} Cf Pa Pu Cm $\mathbf{B}\mathbf{k}$ $\mathbf{E}\mathbf{s}$ Fm MdNo Np Am

Vehicles

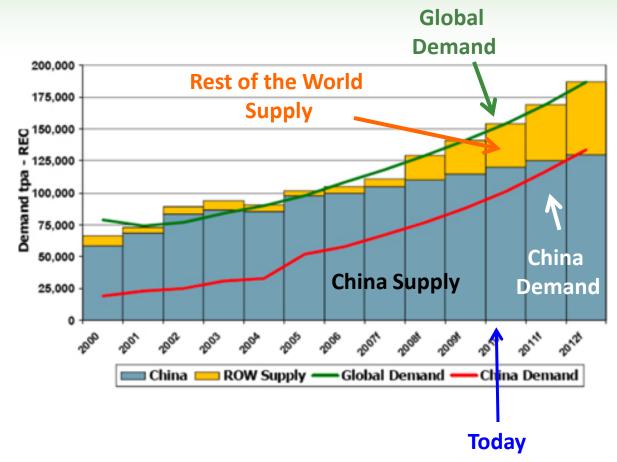
Lighting

Solar PV

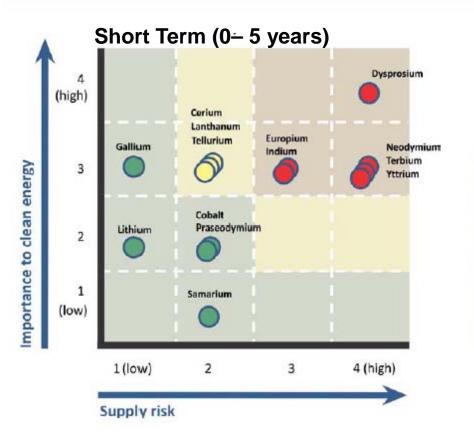
Wind

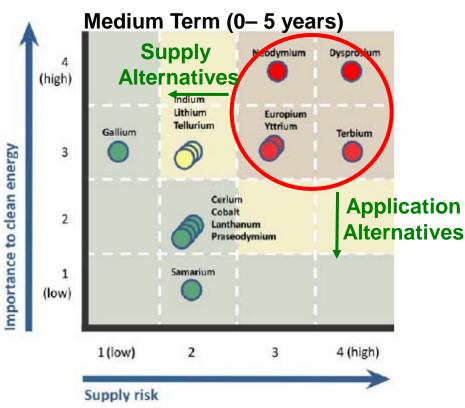

US DOE: Critical Materials Strategy (Dec 2010)

Coordinated Critical Materials Effort

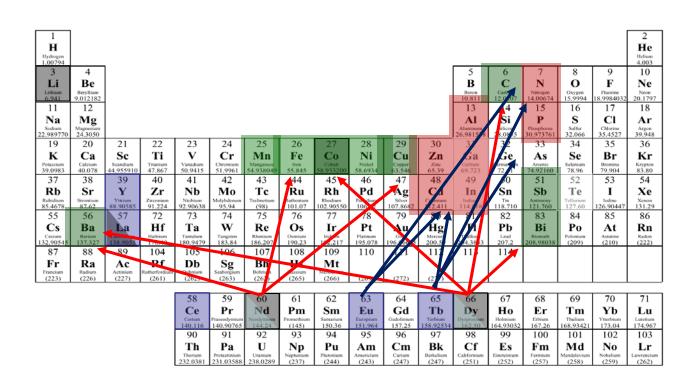

- Policy and International Affairs (PI) led Department-wide Critical Materials Strategy Study
 [David Sandalow, Assistant Secretary, PI]
- US-Japan Roundtable (LLNL) on Rare Earths (Nov 2010)
- US-EU Workshop on Rare Earths Research (Dec 2010)
- ARPA-E Workshop on Critical Materials Technology (Dec 2010)

Shifting Economics Of Rare Earth Materials

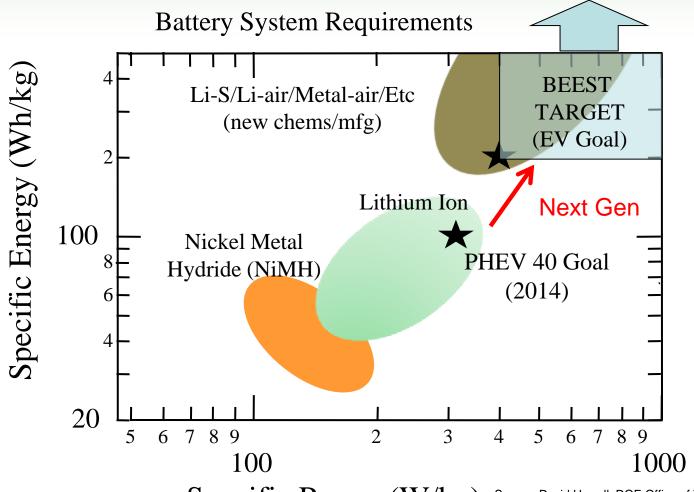

Within 5 Years: World's Dominant Supplier of Rare Earth Materials


May Switch From a Net Exporter to a Net Importer

Rare Earth Criticality by Element

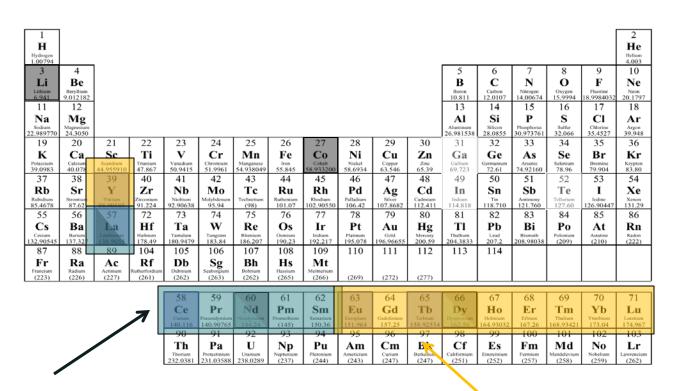


US DOE: Critical Materials Strategy (Dec 2010)


Possible Approach: Eliminate Need for Material

Batteries for Electrical Energy Storage in Transportation (BEEST) Program

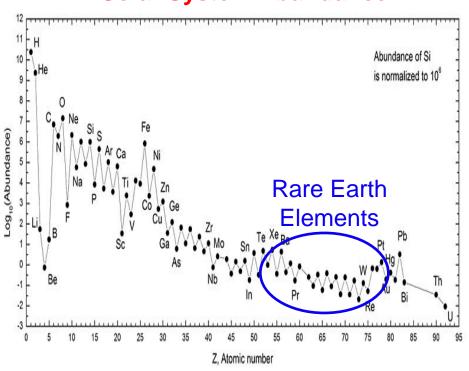
Storage Cost
Current Target:
\$1,000/kWh
BEEST Target:
\$250/kWh

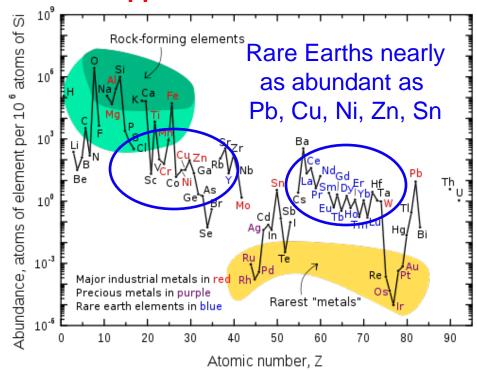

Specific Power (W/kg)

Source: David Howell, DOE Office of Vehicle Technologies, 2009. International Energy Agency, *Technology Roadmaps:* Electric and Plug-in Hybrid Electric Vehicles

Possible Approach: Get Most From Available Supply

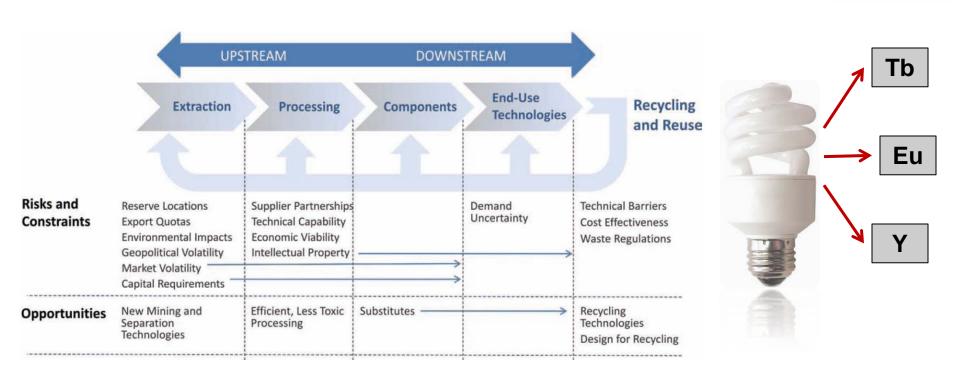
Light Rare Earth Elements


Heavy Rare Earth Elements



Rare Earth Elements Are Not That Rare

Solar System Abundance


Upper Crust Abundance

Developing Technology Alternatives Across Supply Chain

Critical Materials in Clean Energy from DOE-Wide Study

1																	2
н																	He
Hydrogen																	Helium
1.00794																	4.003
3	4											5	6	7	8	9	10
Li	Be											В	C	N	О	F	Ne
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium 22.989770	Magnesium 24,3050											Aluminum 26,981538	Silicon 28,0855	Phosphorus 30,973761	Sulfur 32,066	Chlorine 35,4527	Argon 39,948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35.4527	36
								~									"
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44,955910	Titanium 47.867	Vanadium 50.9415	51.9961	Manganese 54.938049	1ron 55.845	Cobalt 58.933200	Nickel 58,6934	63.546	65.39	Gallium 69.723	Germanium 72.61	74.92160	Selenium 78.96	79,904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Aa	Cd	In	Sn	Sb	Te	T	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Ag Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
85.4678	87.62	88.90585	91.224	92.90638	95.94	(98)	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium	Barium	Lanthanium	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.90545	137.327	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196,96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						oxdot

58	59	60	61	62	63	64	65	66	67	68	69	70
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Cerium	Praseodymium	Neodymiam	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosiem	Holmium	Erbium	Thulium	Ytterbium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04
90	91	92	93	94	95	96	97	98	99	100	101	102
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

Vehicles

Lighting

Solar PV

Wind

Key Elements in Energy-Wide Supply Chain

Traditional Energy

Smart Grid

Vehicles

Lighting

Solar PV

Technology Opportunity Areas for Study

Vehicles

Lighting

Solar PV

Wind

Traditional Energy

Smart Grid

Batteries

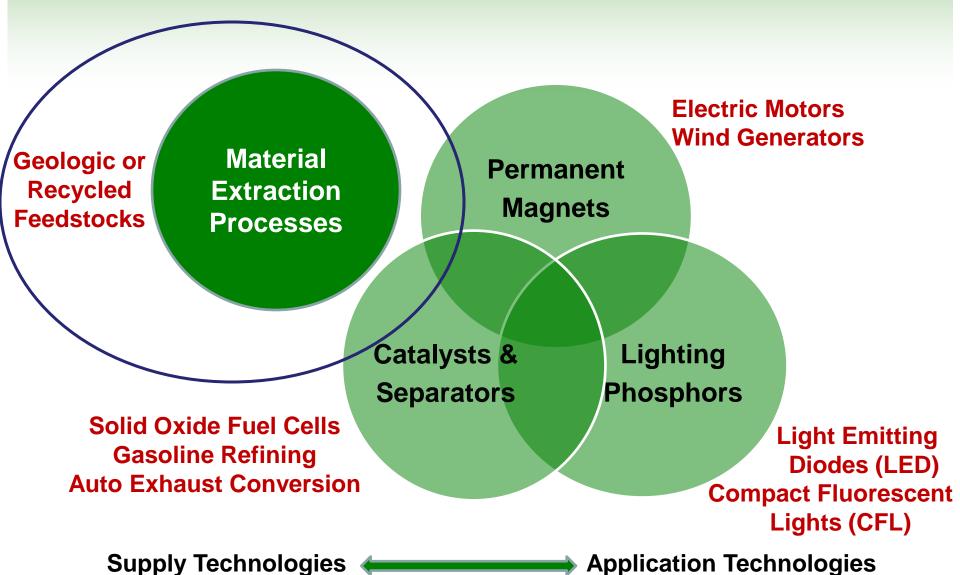
Phosphors

Transparent Contacts

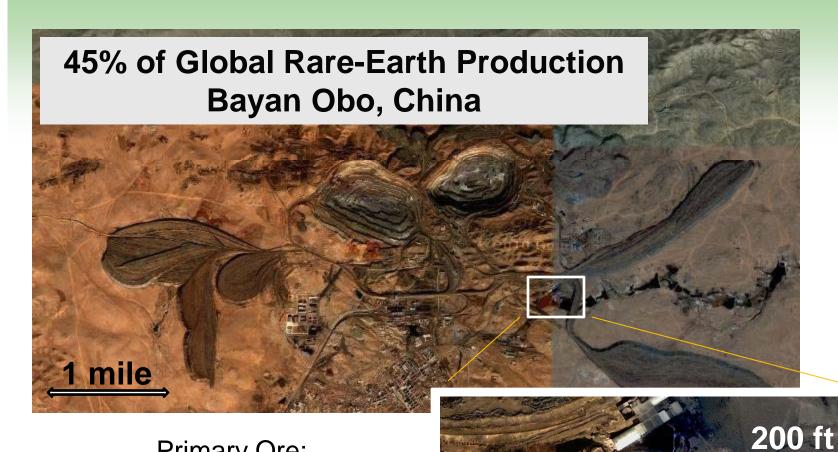
Permanent Magnets

Oxygen Separators

Catalysts


Opportunities
For New, Disruptive
Approaches to
Technology Needs

Metrics to Drive New Learning Curves and Approaches



ARPA-E Workshop: Critical Materials Technology

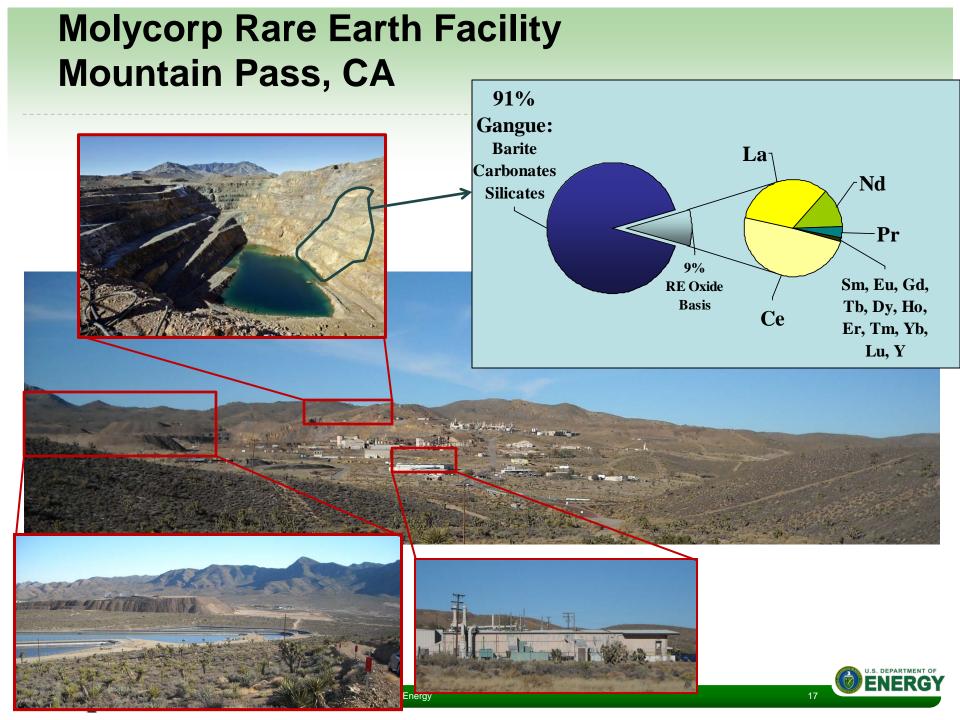
Containment

Primary Ore:

Bastnasite: RE-(CO₃)F 800 million metric tons; 6% REO

> Secondary Ore: Monazite: RE-PO₄

Photos: Google Maps



Containment

Primary Ore:

Bastnasite: RE-(CO₃)F 3.3 million metric tons: 7-9% REO

Photos: Google Maps

Different Types of Rare Earths

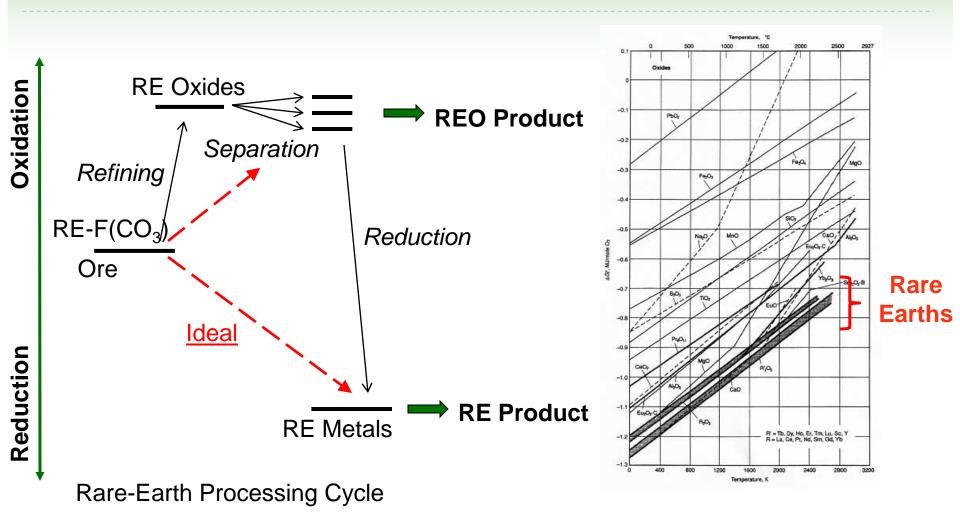
Heavy and Light Rare Earths are from different Ores

Light Rare Earths

Neodymium – Magnets

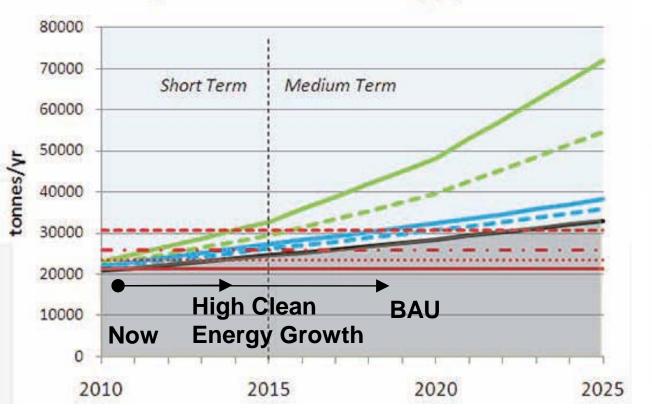
Heavy Rare Earths

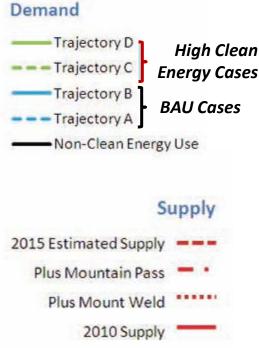
Dysprosium - High Temp Magnets


Yttrium – SOFCs and Phosphors Terbium – Phosphors Europium - Phosphors

							\sim			$\overline{}$						\sim
			LIG	нт	/ \	Г	IEDIU	м		(-)		НЕ	AVY			$/ \setminus$
ТҮРЕ	LOCATION (S)	Lanthanum (La)	Cerium (Ce)	Praseodymium (Pr)	Neodymium (Nd)	Samarium (Sm)	Europium (Eu)	Gadolinium (Gd)	Terbium (Tb)	Dysprosium (Dy)	Holmium (Ho)	Erbium (Er)	Thulium (Tm)	Ytterbium (Yb)	Lutetium(Lu)	Yttrium(Y)
Currently ac	tive:								V							
Bastnäsite	Bayan Obo, Inner Mongolia	23.0	50.0	6.2	کی	0.8	0,7	0.7	9.1	\u2\	0.0	0.0	0.0	0.0	0.0	W
Xenotime	Lahat, Perak, Malaysia	1.2	3.1	0.5	1.6	1.1	0.0	3.5	0.9	8.3	2.0	6.4	1.1	6.8	1.0	61.0
Rare earth laterite	Xunwu, Jiangxi Province, China	43.4	2.4	9.0	31.7	3.9	0.5	3.0	0.0	0.0	0.0	0.0	0.0	0.3	0.1	8.0
lon adsorption clays	Longnan, Jiangxi Province, China	1.8	0.4	0.7	3.0	2.8	0.1	6.9	1.3	6.7	1.6	4.9	0.7	2.5	0.4	65.0
Loparite	Lovozerskaya, Russia	28	57.5	3.8	8.8	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Various	India	23	46	5	20	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Various	Brazil	N.A.														
Possible to	come online in	the ne	ext 5 y	ears:												
Bastnāsite ²²	Mountain Pass, California, United States	33.2	49.1	4.3	12.0	0.8	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Monazite	Mount Weld, Australia	26.0	51.0	4.0	15.0	1.8	0.4	1.0	0.1	0.2	0.1	0.2	0.0	0.1	0.0	0.0
Wionazite	Eastern coast ²³ , Brazil	24.0	47.0	4.5	18.5	3.0	0.1	1.0	0.1	0.4	0.0	0.1	0.0	0.0	0.0	1.4
Apatite	Nolans bore, Australia	20.0	48.2	5.9	21.5	2.4	0.4	1.0	0.1	0.3	0.0	0.0	0.0	0.0	0.0	0.0
Fergusonite ²⁴	Nechalaco, Canada	16.9	41.4	4.8	18.7	3.5	0.4	2.9	1.8	0.7	0.0	0.0	0.0	0.0	0.0	7.4
Bastnäsite & Parisite	Dong Pao, Vietnam	32.4	50.4	4.0	10.7	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.007
Alanite & apatite	Hoidas Lake, Canada	19.8	45.6	5.8	21.9	2.9	0.6	1.3	0.1	0.4	0.0	0.0	0.0	0.0	0.0	1.3
Trachyte	Dubbo Zirconia, Australia	19.5	36.7	4.0	14.1	2.5	0.1	2.1	0.3	2.0	0.0	0.0	0.0	0.0	0.0	15.8

Rare Earth Oxide and Metal Extraction Process





Supply and Demand Scenarios Neodymium (Permanent Magnets)

Neodymium Oxide Future Supply and Demand

ARPA-E Workshop: Critical Materials Technology

Geologic or Recycled Feedstocks

Material Extraction Processes

Permanent Magnets

Catalysts & Lighting
Separators Phosphors

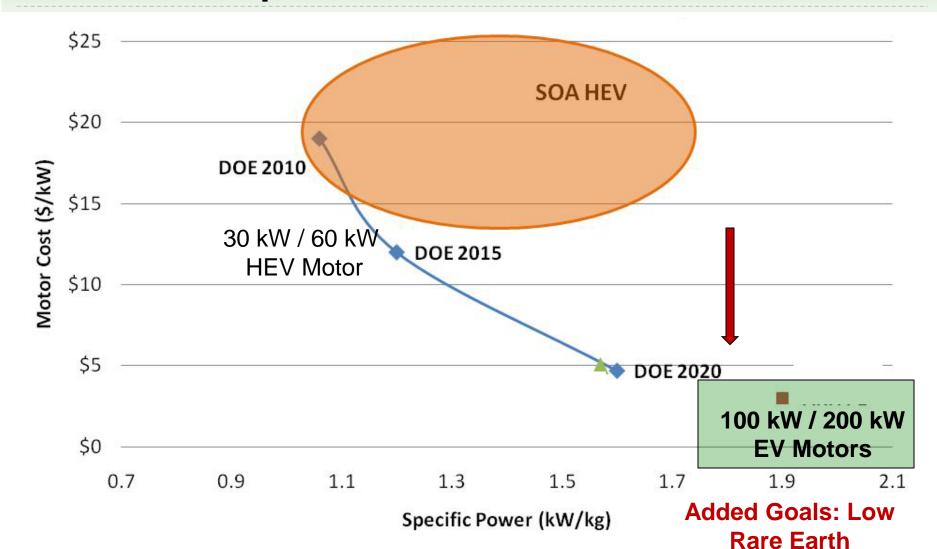
Solid Oxide Fuel Cells
Gasoline Refining
Auto Exhaust Conversion

Light Emitting
Diodes (LED)

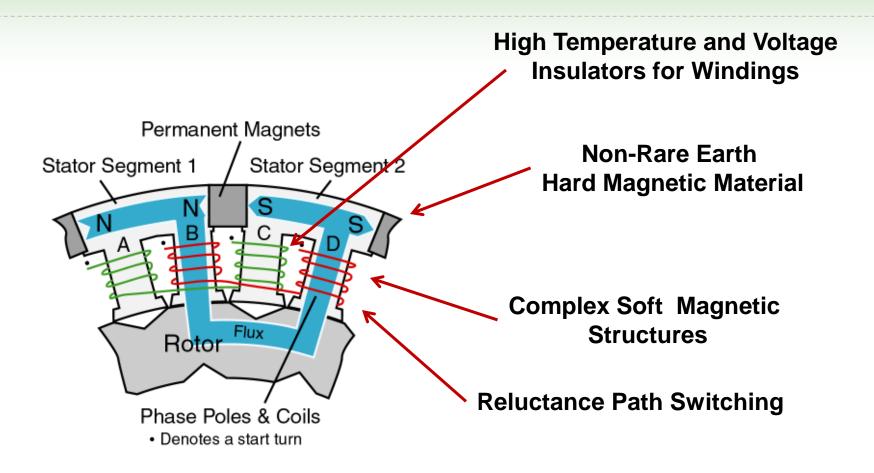
Compact Fluorescent Lights (CFL)

Supply Technologies

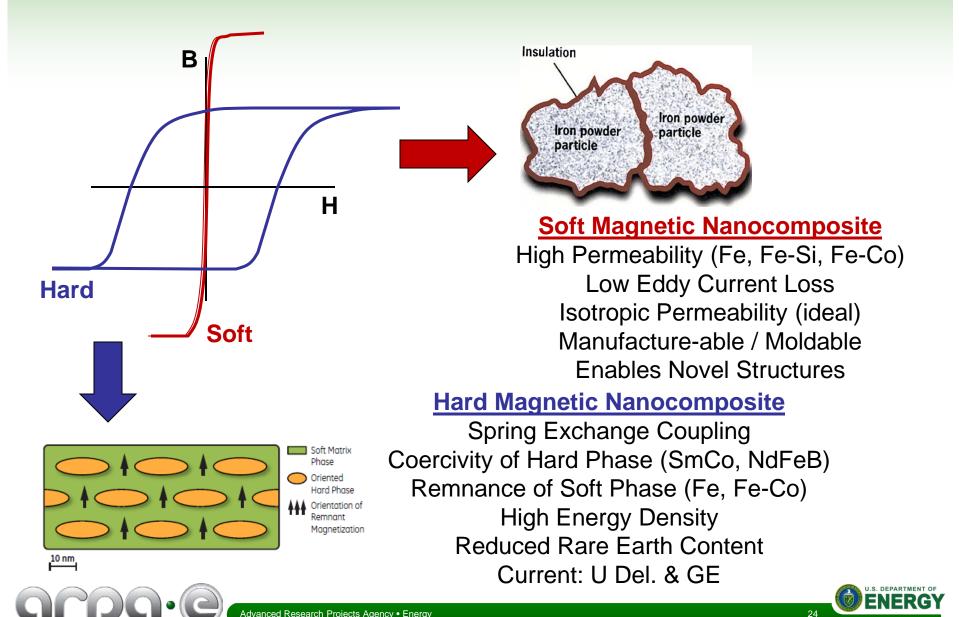
Application Technologies


Electric Motors

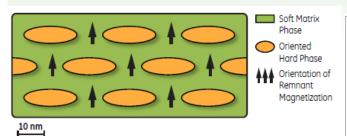
Wind Generators


Magnetic Systems: Motors for Electric Vehicle (EV) 2020 Roadmap Goals with Low Rare Earth Content

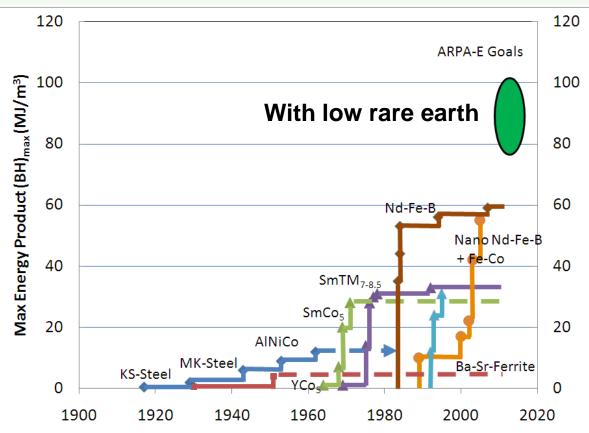
Advanced Electric Motor Concepts



Example: Parallel Path Magnetic Motor Technology



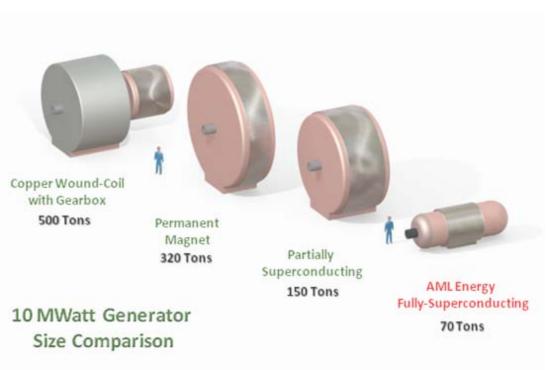
Needed Enabling Magnetic Materials


Nanocomposite Permanent Magnets

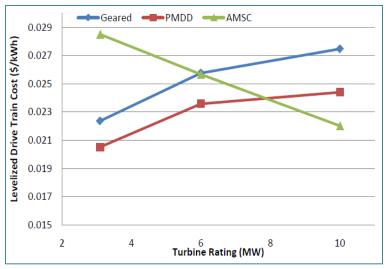
Core@Shell Hard/Soft Exchange Spring Coupled Nanocomposite Magnets with:

• 80 MGOe (vs 59 MGOe NdFeB)

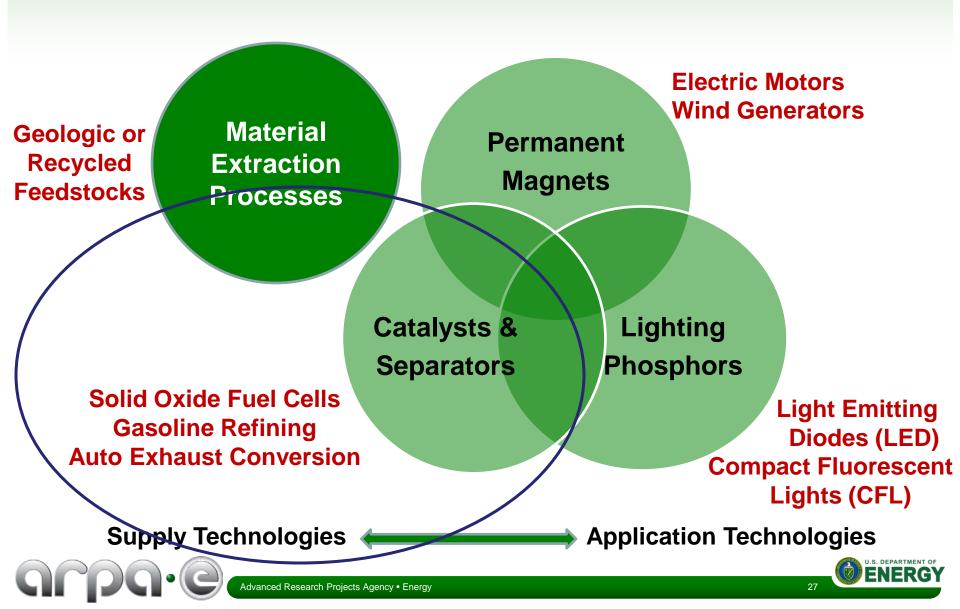
59 MGOe
 with 80% less rare earth




Nanocomposite exchange spring coupled permanent magnets with high energy product and less rare earths



Large Scale Wind Generator (>10MW) Systems



ARPA-E Workshop: Critical Materials Technology

Catalysts: Fluid Catalytic Cracking

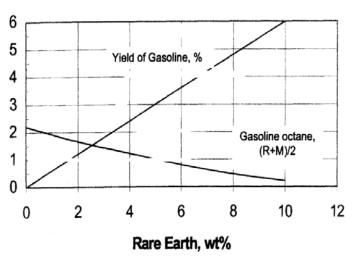
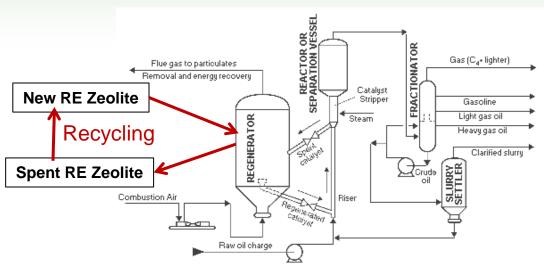
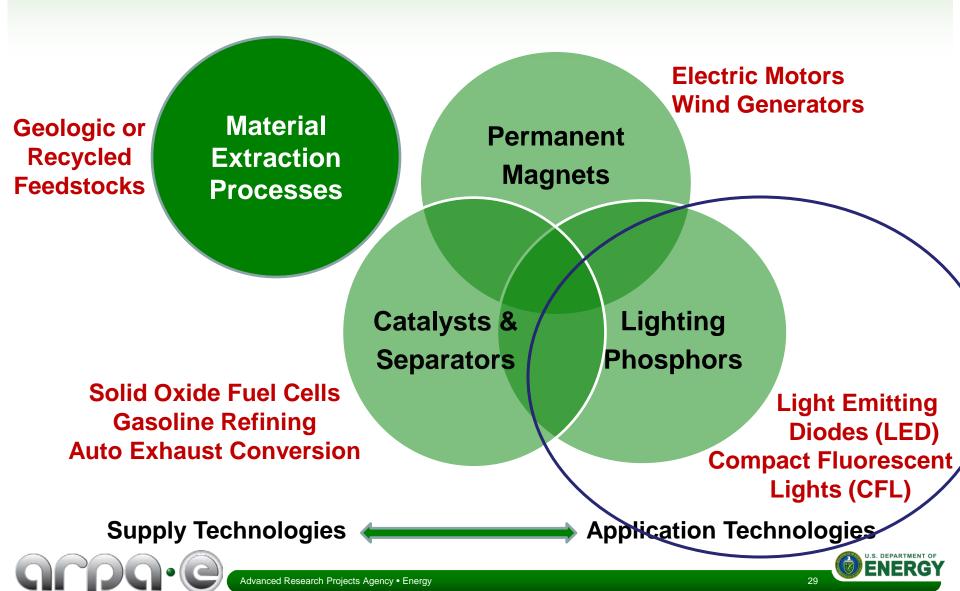
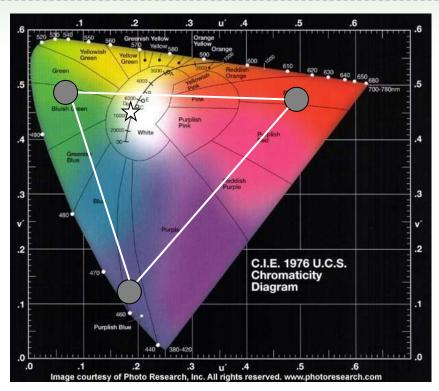
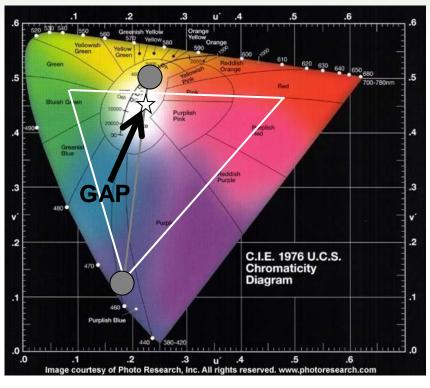



Figure 3-6. Effects of rare earth on gasoline octane and yield.


1-2% catalysts replaced per day.All catalyst replaced every 2 months due to loss of aluminum.Old catalyst is landfilled.

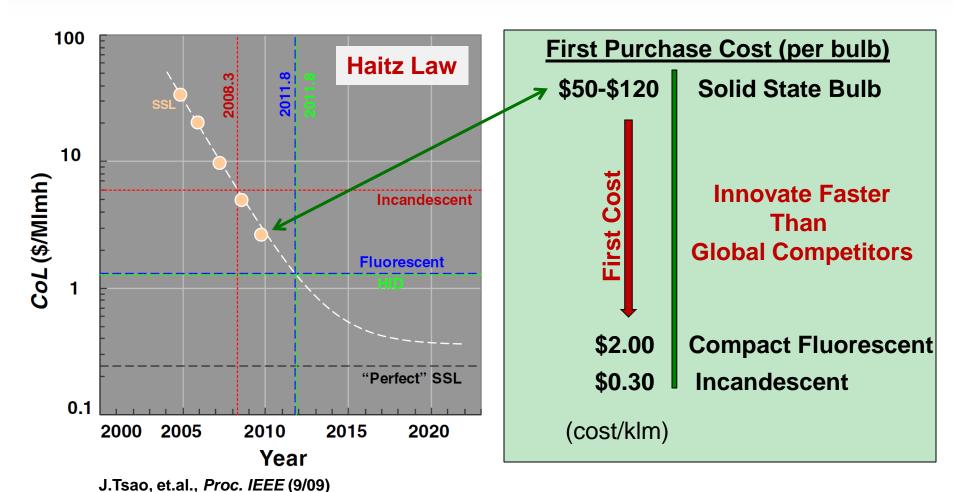
Recover Rare-earth content from spent FCC catalyst could potentially have Impact.





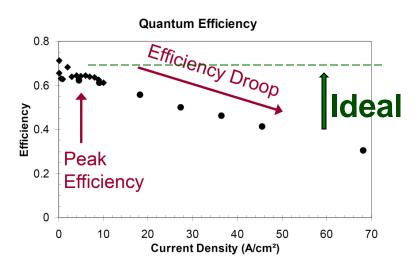
ARPA-E Workshop: Critical Materials Technology

Application: Rare Earth Phosphors for CFLs

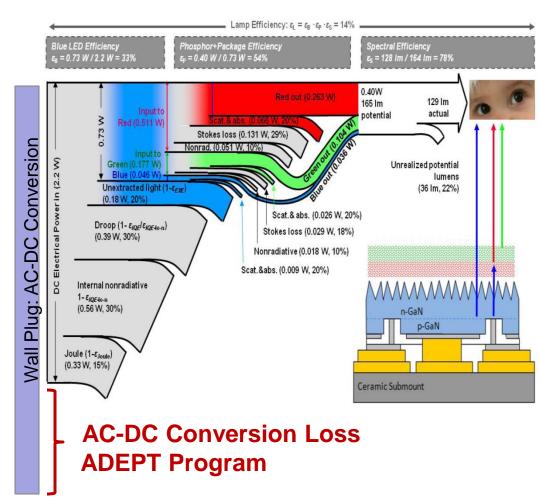


Phosphor	Code	Color	Emission Wavelength	Nature	Rare Earth(s)
BaMgAl ₁₀ O ₁₉ :Eu ²⁺	BAM	Blue	450 nm	Broad band	Eu
LaPO ₄ :Ce ³⁺ , Tb ³⁺	LAP	Green	545 nm	Sharp line	La,Ce,Tb
Y ₂ O ₃ :Eu ³⁺	YEO	Red	610 nm	Sharp line	Y, Eu

Cost of Lighting (CoL) vs. First Lumen Cost (Bulb)



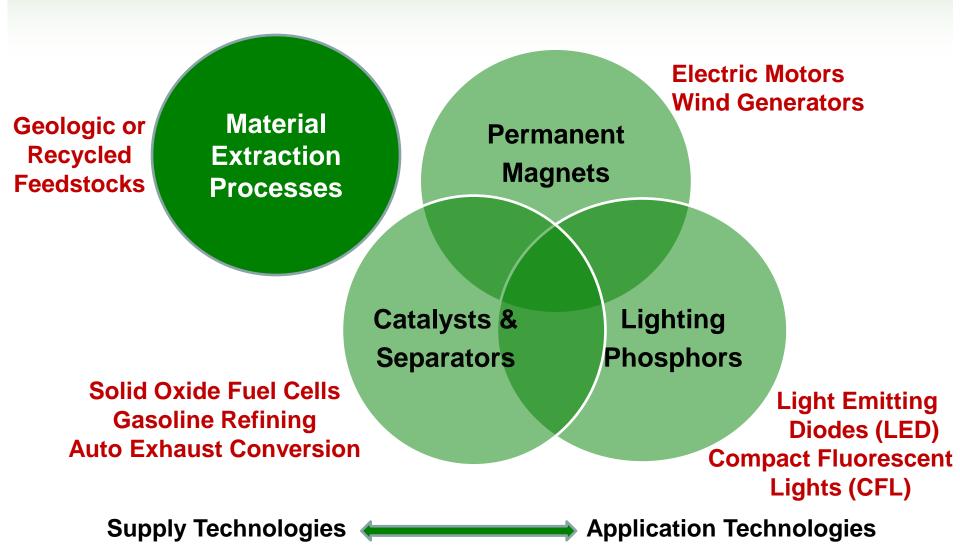
First Purchase Price for Lighting



Technical Pathway to Low First Cost LEDs: Eliminate Droop Losses Through Innovation

Physical Origins of Droop
Auger Recombination
Non-Radiative Defects
Carrier Overflow from MQWs
Crystal Polarity

Rare Earth Free Phosphors
Luminscent Nanoparticles
without Cadmium



J.Tsao, et.al., Proc. IEEE (9/09)

Summary: Critical Materials Technology

Questions

